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A Note on Asymptotic Evaluation 
of Some Hankel Transforms 

By C. L. Frenzen* and R. Wong** 

Abstract. Asymptotic behavior of the integral 

if(w) = e- Jo (Wx)f(x2)xdx 

is investigated, where Jo(x) is the Bessel function of the first kind and w is a large positive 
parameter. It is shown that 1f(w) decays exponentially like ewy2, y > 0, when f (z) is an 
entire function subject to a suitable growth condition. A complete asymptotic expansion is 
obtained when f(z) is a meromorphic function satisfying the same growth condition. Similar 
results are given when f(z) has some specific branch point singularities. 

1. Introduction. Recently, B. Gabutti proposed to us the problem of finding 
asymptotic expansions for integrals of the form 

(1 .1 ) 1if (w) = e Jo (wX) f (x 2)x x, 

where Jo(x) is the Bessel function of order zero and f(x) is a continuous function in 
(0, oc). According to Gabutti, integrals of this type occur in some problems of 
high-energy nuclear physics; see [2], [3]. Numerical evaluation of these integrals has 
been carried out by Gabutti himself [1], [2]. 

Clearly, the integral If (w) is a special case of the Hankel transform defined by 

(1.2) H(w) = h(x)JO(wx) dx, 

and a considerable amount of work [4], [7], [9], [10], [11] has been done on the 
asymptotic evaluation of this transform. The major result is that if h(x) has a power 
series expansion at x = 0, then the asymptotic expansion of H(w), as w -* + oc, can 
be formally obtained by termwise integration (in some generalized sense). However, 
if one applies this result to the odd function h(x) = e-X9(x2)x, one obtains an 
asymptotic expansion whose coefficients are all zero. The same phenomenon also 
arises with Fourier integrals; see Olver [6, pp. 78-79]. This of course prompts one to 
suspect that the integral If(w) may be exponentially decaying. That this suspicion 
should be sustained will be the purpose of this note. More specifically, we shall show 
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that if f(z) is an entire function satisfying a certain growth condition, then If(w) 
decays like e for some y > 0. Moreover, we shall derive infinite asymptotic 
expansions for If(w), when f(z) is a meromorphic function satisfying the same 
growth condition. Our method is similar to that of Olver, namely, a shift of the 
integration path parallel to itself in the complex plane. Similar results are also 
obtained, when f(z) is one of the following elementary functions: z l/(b + z)V, 

log(b + z) and log z, where b and v are positive numbers and n is a nonnegative 
integer. 

2. The Case of Entire Functions. Let q > 0 and t < 1, and let f(z) be an entire 
function satisfying 

(2.1) If(Z)I < MeZRez1IImZI, M > o, 
for all sufficiently large IzI. Define 

(2.2) a = I + n2/(- 

THEOREM 1. Under the above condition, we have 

(2.3) If(w) = O(e-W)/4a asw +?x. 

Proof. Let m = 1 and v tend to zero in Eq. (5) on p. 75 of [8] to obtain 

HA )(ze ) = HO()(z) - 2Jo(z). 

Note that the Hankel function H(l)(z) has a logarithmic branch point at z = 0. By 
taking a branch cut along the negative imaginary axis, it can be shown that 

(2.4) If(w) = 2|f ex2H0()(wx)f(x2)x dx 

where the branch of H(l)(z) is determined by taking the branch of log z which is real 
for positive z. Now, consider the contour integral 

(2.5) CR(W)= f ez2H,1)(wz)f(z2)zdz, 

where the path F, traversed in the positive direction, is the boundary of the rectangle 
whose vertices are at (-R, 0), (R, 0), (R, w/2a) and (-R, w/2a); here R > 0 and a 
is given in (2.2). With the cut along the negative imaginary axis, by Cauchy's 
theorem, we have 

(2.6) CR(w) = 0 forallR > 0. 

Letting R -* + oo, the contribution from the portion of F parallel to the imaginary 
axis tends to zero by condition (2.1). The remaining horizontal pieces of (2.5) reduce 
to 

(2.7) If(w) =1 jo+iw/2a eCZ2Hg)(wz)(Z2)zdz. 
- oc ?iw/2a 

In view of the well-known result [8, p. 219] 
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the integral on the right-hand side of (2.7) is easily seen to be dominated by 

(2.9) M exp 2 ( -- 

2'7Tw ~~ 4a2 2 a 

xf0 e(1)x +(W)I(2 +w2)1/4d xJ e- J-tX +new/a)jxl.X2 + 2 A.d 
_,0 4a 

Since 

W 2 1/4 22a \3/21 W2 
x2 + 
t 4a21 W 4a2 

upon splitting the last integral at x = 0, completing the square in the exponents of 
each of the two integrals and recombining them, we can show that the integral in 
(2.9) is dominated by 

2(3a ep{r2wa)I }Joo(2 +f)e l(1qX~ w/aC.2 x 
(w) ( 4(1 _ ) 0 ( 4a 2 )V ( I _ 1w, - 

Making the change of variable 

U ( W/a) 
u= 21-- 

the above integral becomes, by using (2.2), 

_____2 _ _ (W/a) 2 t~~~~- I UZ 2 + U(~a + ldu 
iL~ J_)avj2A +- (i - o3/2 4a(l - )1 

which is clearly dominated by 

IL (1 
00 

2u ~ n(W/a) f0Iueud _ \ . for "e-u du + 7lWa){ ule-u'dui 
00- .S- Y(1 -)3/2 

W2 IX 2 ) 
+ 

4a(1 JO0 
e&u du} 

A combination of the above results shows 

l|f( W)| IM exp, a 

where 

_ Ma 4n _ 1 2a 
-(1)3/2 L 

I 

I 7r( -) W 2 

This completes the proof of the theorem. 0 
Condition (2.1) may be slightly weakened. For instance, we may replace it by 

If(z)I < MAz Ie Rez+nItmzj 

for all large Izi, where y > 0, t < I and n is a positive integer. The order estimate for 
If(w) is then given by O(W2ne w2/4a). 

Note that the above method cannot be extended to the more general integral 
J0 

=-x 
< 

(WX)f (X2)XdX 
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unless v is an even integer. This is due to the fact that the identity 

H(l(te-) = H'()(t) - 2J,(t) 

holds only when v = 2m, where m is an integer; see [8, p. 75, Eq. (5)]. In this case 
the proof proceeds as before. If v is not an even integer, then the term He')(te7') in 
the above equation is multiplied by the factor e" V, in which case the above integral 
on (0, co) cannot be rewritten in the form of an integral on (-0o, o) corresponding 
to the one given in (2.4). 

As an example of Theorem 1, we consider the integral 

(2.10) I(w) = f e JO(wx)xsinx dx. 

Since 1(z) = sin z is entire and bounded by eJImZI, we have 0 = 0 and 'q = ?1. 

Equation (2.2) then gives a = 2. From Theorem 1, it now follows that 

(2.11) 1(w) = O(eW2/8). 

The integral I(w) was used by Gabutti [1], [2] to illustrate his numerical procedures; 
however, no mention was made of the exact evaluation 

(2.12) I(w) = bew /8(cos - - sin w2) 

The result (2.12) follows immediately from the well-known identity [8, p. 393; 5, p. 
8] 

(2.13) f xe-XXJ0(wx)dx = 2 e /4X; ReX > 0, 

by taking the imaginary part of both sides with X = 1 - i. 

3. The Meromorphic Case. We first note that if f(z) is a meromorphic function 
with a finite number, say, m of poles located away from the nonnegative real axis, 
then f (z2) is a meromorphic function with 2 m poles located away from the real axis, 
with m poles in the upper half-plane and m poles in the lower half-plane. Hence, for 
convenience, we may state the following useful result in terms of f(z 2) and its poles 
in the upper half-plane. 

THEOREM 2. Let f (z) be a meromorphic function such that f (z') has a finite number 

of poles located in the upper half-plane, say, at al,...,a,,, and let f(z) satisfy the 
growth condition in (2.1). Then, as w -*+ ?o, 

(3.1) If(w) = ri E Res e zHf1)(wz)f(z2)z; a1) + O(e-W /4a), 
j=l1 

a being the same as in Theorem 1. 

Proof. The proof is identical to that of Theorem 1, except that as we deform the 
contours of CR( w), we pick up the residues from the poles of f( z 2). [1 

An immediate consequence of (3.1) is that as w -- + oc, 

If(w)= O(e-'w) 

where 8 = min{Im aj: i = 1,. . ,m }. This follows from the fact that H(')(wz) decays 
exponentially like e - w Im Z in the upper half-plane; see Eq. (2.8). 
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As an example of Theorem 2, we consider the integral 

(3.2) I(3)(w) e XJO (wX) X dx. 

Since f(z2) = (1 + Z2)-1 has a simple pole in the upper half-plane at z 
Theorem 2 gives 

(3.3) I(3)(W) = eKO(w) + O(eW2/4)* 

where KO(w) is the modified Bessel function. The well-known asymptotic expansion 
of KO(w) then yields 

((3)( W- -W+1[1-/2_ 1 2 9 -5/2 

2 L 8 128J 

An alternative method of deriving (3.3) is to introduce a parameter into the 
exponential function in (3.2) and to obtain a first-order linear nonhomogeneous 
ordinary differential equation with the parameter as the independent variable. This 
equation can be solved in closed form and the result in (3.3) can be recovered by 
setting the parameter equal to one. 

4. Algebraic Singularities. Let v be real, n = 1, 2,..., and consider the integral 

a, ~ ~~~ X28+1 

(4.1) I(4)(w) e= J(wx)( + 2 dx, 

where a is a positive number. The case when v is an integer is covered by Theorems 1 
and 2. However, if v is not an integer, then we must proceed in a different manner. 
Let us first assume that v is positive. 

Inserting the identity 

(4.2) (a2 +x2) F() f t^-'e (a2?+2)tdt 

in (4.1) and reversing the order of integration, we have from [8, p. 394 (3)] 

(4.3) I(42(W) - 21() k k( ) ( 
k 

tkw! k() 

where 

(4.4) 1fl?(w) = l (exp - 4(1W t) dt. 

From a numerical point of view, the integral P,( w) is easier to handle than the 
integral I(4)(w), since the integrand in (4.4) does not involve the Bessel function and 
is positive. To derive an asymptotic expansion for .m( w), we prove the following 
general theorem. 

THEOREM 3. Let v and c be positive, let f(t) be a continuous function in (0, cc) 
satisfying the following conditions: 

(i)f(t)= O(t -),ast - +,0forsome6 > 0; 
(ii) f (t) = O(ePt), as t so, for some p > 0; 
(iii) f( t) is analytic in a neighborhood of t = 1. 
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Put 

(4.5) F(X)= (t - f (t)exp -X (t + dt. 

Then, as X -- + xo, we have the generalized asymptotic expansion [6, p. 25] 

(4.6) F(X) - e 2X[ E cnv(X)F(n + - )X n 1/2; {n 1/2}] 

where each c ,, (X) is a bounded continuous function of X in (0, xo) and is bounded away 
from zero for all large values of X. 

Proof. Our argument will be based on the well-known method of Laplace [6, pp. 
85-86], and, without loss of generality, we shall take X > 2c. Splitting the interval of 
integration at t = 2 and t = 1, we have 

(4.7) F(X) = E(X) + F,(X) + F2(X), 

where E(X), F,(X) and F2(X) correspond, respectively, to the intervals (c/X, 1/2), 
(1/2, 1) and (1, xo). Since the function t + t is decreasing in (0, 1), the integral 
E(X) is bounded by 

exp (-X + ))/2 (t - (t)dt 

By condition (i), it is easily seen that the last integral is O(VX). Hence, we have the 
order estimate 

E(X)= O(X8e-/c). 

Anticipating the final result, we may drop this term and write 

(4.8) F(X) = F,(X) + F2(X) as X- + oo. 

In the integrals F,(X) and F2(X), we shall make the change of variables 

(4.9) t + 2= T. 

The function on the left is strictly decreasing in 2 < t < 1 and strictly increasing in 
t> 1, and maps the interval 1 < t < xo onto 0 < T < xo and 2 < t < 1 onto 

> T> 0. From these monotonicity properties, it follows that the transformation 
(4.9) is invertible. Denote the inverse by 

t= t +(T), 

where the plus sign is to be used for X increasing (i.e., in F2(X)) and the minus sign is 
to be used for T decreasing (i.e., in F1(X)). Upon this change of variables, the 
integrals F1(X) and F2(X) become 

F1(X) = -e2XJ fT(r; X)e- dT and F2(X) = e2XJ f(; X)e- dAT 

where 

(4.10) f+(T; X) = (t?(T)- A) f(t+(T))yt 

and-f(T; X) is defined to be zero for X T 2. Put 

(4.11) f((T; X) f+f(T; X) -f-(T; X). 
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Then 

(4.12) F1(X) + F2(X) = e2Xf f((T; X)exTdT. 
0 

We shall next show that in a neighborhood of X = 0, we have 
00 

(4.13) f(T; X) = E (X) 
n =O 

where the coefficients cn ,(X) are exactly those given in the final result (4.6), which 
will now follow immediately from (4.8), (4.12) and (a modification of) Watson's 
lemma [6, p. 71]. 

To prove (4.13), we note that Eq. (4.9) gives 

(T) )= 4[2+?T T2+4T] 

For 0 < X < 4, the right-hand side of this equation can be represented by the power 
series 

(+ v") 
oo~/2 k~[T 

(4.14) a?(/;W) = 1 + 2 + 2 k 

Observe that for 0 < T < 4, we have 

(4.15) t?(T) =a_(r) 

and 

(4.16) a+(W) =a(-VT)- 

If F?(rT ; X) denotes the quantities 

- ) f(f+(W))a( ) da 

then from (4.15) and (4.16) it follows that for 0 < X < 4, 

(4.17) f_(T; X) = F+(W; X) 

and 

(4.18) F+(rT ; X) = F-(-VT ; X). 

Since (t - c/X)Y-1f(t) is analytic in a neighborhood of t = 1, it is clear from (4.14) 
and (4.18) that there exists a positive number 8 such that for 0 < X < 8, F+(W; X) 
has a convergent expansion of the form 

00 

F+ (r/; X) =E, (?)l8la (X)r(nl)/2 
n=O 

where the coefficients an,,(X) have the same properties as those cn,,(X) given in 
(4.6). Relations (4.11) and (4.17) then give 

00 

f(T; X) = 2 a a2n r(k)T-1/2 
n =O 

With cn (X) = 2a2",^XX), this establishes the result in (4.13) and hence the theo- 
rem. 0 
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The coefficients c,1,(X) can be calculated explicitly, and, for convenience of 
application, we give the first three: 

c0(X) = (1 - C) f(1), 

c1~~(X) = ~ v(1-- V )2-kbf(S(1) 
k=o A=0 

where 
b2 = 1, 

3 
blo = 29 bl, = 1 

3 3 
boo= 8' bo1= 2' bo2 1, 

and 
4 

( -1- k(V 4-k if (') (l) 
C21,(X) = ( - )/kv a )4;kaf() 

where 

a40= 1, 

5 
a3= -5 a31 = 1, 

2 
15 5 

a ~~~aa 
a20= 8 21 = 21 ' a22= 1, 

5 15 5 
al0 = all = a12= 2 a13 = 1, 

5 5 15 5 
a00=-1-~- a0l=yI a02=-~- a03 = a04=1 ?- 128 '0 16 ' 0-8 0-2 04 

Also, it is easily seen that each cn ̂ (X) can be expanded into an asymptotic 
expansion in powers of 1/X, and that the generalized asymptotic expansion (4.6) can 
be rewritten in the Poincare form 

00 

(4.19) F(X) - e -2X 1 dn(V,)X- n-1/2I 
n=O 

where the coefficients d"(^) are independent of X. However, in many circumstances, 
we find it more convenient to apply the result in (4.6) directly. 

Returning to (4.4), we make the substitution 
w 1+t = 
2aT 

The function 4m(w) then becomes 

4Im(W) = ea ( 2) j (7 - __) Tr 1exp(- 2T(r + - dT. 

The last integral is of the form (4.5), with X = aw/2, c = a2 andf(t) = t-m-1. Thus, 
by Theorem 3, 

(4.20) 'Dm(w) ( w) e- wa+a [ao(w)w 1/2 + al(w)w3"2+ 
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The coefficients a"(w) can be obtained from the expressions for c,,,,(X). In particu- 
lar, we have 

ao(w) = 1 - 

Inserting the result (4.20) into (4.3) gives the asymptotic expansion of I(4)(w). 

As a special case, we obtain 
0 2 (W) X + 1 2 5 3 (4.21) J e-xJ0(wx) 1 dx - e-w + w-2 + -W3 +.] 

To derive a similar result for the case f(x2) = 1 + x2, we write 

/1 ~+X~2 1 + X2 

1+X2 1 + X2 

Both functions on the right-hand side are of the form considered in Eq. (4.1), and 
hence the above analysis applies. This device, of course, extends to the more general 
function f(x2) = (a2 + x2), where a and ,u may be any positive numbers, thus 
removing the assumption v > 0 imposed earlier. 

5. The Logarithmic Case. A simple and tempting way to derive an asymptotic 
expand sion for the integral 

(5.1) I(5)(w) = j ex_2J(wx)log(a2 + x2)x dx 

is to differentiate the expansion 
00 2 (W) X 1 W _ 

- 
-1-2 

eJ-(wx) -wa+a (V)W-n 00 (aJO2) dx 
- b 

(a 2+ X 27(i;) k a n=0 

(obtained from (4.3) and (4.20) with n = m = 0) with respect to v and then set 
v = 0. However, this formal derivation is not easy to justify, and hence we shall 
proceed in a different manner. Our analysis here is essentially that given in Section 
4 except for somer-n-Minor modification. 

We first recall the identity 

log(a2 + x2) = -y -(a2 + x2)j (log t)e-(a2+x2)tdt. 

Inserting it into (5.1), we obtain 

I(5)(w)= -'ye eW2/4 - (w) 
2 

where 

[ 2 ] 

a2( + t ) + t)2 8(1 + t)3 

X exp(-a 2t - 41 t)}dt. 
Pt 4(1 + t)) 

The substitution 1 + t = (w/2a)T then gives 

e- a ()I(W) = log( o )j{ G(T; w) dT + j log T- - )G(T; w) dT, 
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where 

(a3 2a 2 a 3a 
G(T; W) 2+ 2 3 )ex - 2 T 

By integration by parts, the first integral on the right can be evaluated exactly to be 

a - a2_W2 /4 
W 

To the second integral on the right, we can apply a variation of Theorem 3. 
Disregarding terms of the order e - w2 /4, we arrive at the final result 

(5.2) I(5)(w) - 2rae-wa+a [e2 -3/2 + elw-5/2 + e2w-7/2 + 

where eo = 1,e1 = 2a + 3/8a, e2 = 4a2 + 15/4 - 15/128a2. 
For completeness, we include a discussion of the case f(x2) = log x2. Here, as we 

shall see, the integral If(w) is not exponentially small, in contrast with the other 
results obtained thus far. This is probably due to the fact that the log function does 
not have a power series expansion at the origin. We also point out that since the 
coefficients en in (5.2) depend on a and are not continuous at a = 0, the asymptotic 
expansion of the integral 

00 (5.3) I(6) (w) = 
* 

I _X2 (WX) (logX2 )x dx 

will not follow from (5.2) by letting a tend to zero. 
Replacing JO(wx) by its Maclaurin series and integrating term by term, one 

readily obtains 

| e -XJO(WX XdX 2r IF )F1( ; 4 ) 

2 (2 ) ( 4 ) (2 ;;4 ) 

where 1Fl(a; c; z) is the confluent hypergeometric function defined by 

,Fl(a; c; z) = 
c' 

(a) k! ' IZI < X,9 C 0 O. -1,-29,....9 
k 

- 
kC 9k 

and (a)k is the Pochhammer notation 

(a)O = 1, (a)k = a(a + 1) ... (a + k - 1), k = 1, 2,.... 

The second equality in (5.4) is obtained by Kummer's transformation; see [8, p. 394]. 
It is easily verified that 

d-(a) k = (a) k [(a + k) - ip(a)] and lim (a)Mk4(a) = -(k - 1)!, 

4 being the logarithmic derivative of the F-function. Differentiating both sides of 
(5.4) with respect to ,i and setting ,i = 1, we obtain 

(5.5) I(6) (W) = --exp( ! j)Y + E 
8 (4 )[ (4) 

where 
00 k 

k= 1kk! 
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The function E*(z) can be expressed in terms of the complementary exponential 
integral Ein(z), see [6], and it can be shown that as z + xc, 

(5.6) E*(z)-eZ - n?1 
n=O Z 

Coupling (5.5) and (5.6) gives 
00 

(5.7) I(6)(w) - E 2 2+ in !W-2n-2 
n=O 

as w -f + x. This result also follows from Theorem 2 in Soni [7]; note, in particular, 
Eq. (3.5) there. 

6. Conclusion. Asymptotic behavior of the integral If (w), given in (1.1), has been 
investigated for functions f(z) which are entire or meromorphic and satisfy growth 
condition (2.1). For these two cases, it was shown that If(w) = O(e7W2 ) and 
If (w) = O(ew8'), respectively, as w -* + cc, where y and 8 are positive numbers. In 
fact, explicit asymptotic expansions of If(w) were obtained in the case of meromor- 
phic functions. Several specific examples of branch point singularities were also 
considered. Our results seem to suggest that (i) if f(z) has a Maclaurin expansion 
with finite positive radius of convergence, then If(w) has an asymptotic expansion 
of the form 

00 

e-wft E Cnw "/2 asw-* +cc, 
n=O 

for some 13 > 0, and (ii) if f(z) does not have a Maclaurin expansion, then If(W) 
decays only algebraically. When f(z) is meromorphic, the expansion given in (i) 
follows from Theorem 2. To support the statement in (ii), we mention the following 
example in addition to the results in (5A) when ft is not an oad-poesitiveimi ger; an& 
(5.7). Let f(z) = sin vz, and observe that Theorem 2 above does not apply to this 
function. Nevertheless, by Theorem 2 in [9], we have 

if(W) -w-3- 
21 

W-5 _ 1215 7 + 
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